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Abstract

Let M be a smooth manifold endowed with a flat conformal structure andFλ(M) the space
of densities of degreeλ on M. We study the spaceD3

λ,µ(M) of third-order differential operators
from Fλ(M) to Fµ(M) as a module over the conformal Lie algebra o(p + 1, q + 1). We prove
thatD3

λ,µ(M) is isomorphic to the corresponding module of third-order polynomials onT ∗(M) for
almost all values ofδ = µ − λ, except for eight resonant values. The isomorphism is unique and
will be given explicitly, yielding a conformally equivariant quantization. We also study the modules
in the case of resonance. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Modules of differential operators

The study of the spaceDλ,µ of linear differential operators on a smooth manifold viewed
as a module over the group Diff(M) of diffeomorphisms ofM, and the Lie algebra Vect(M)

of vectors fields onM is a classical problem of differential geometry [17]. The modulesDλ,µ

have already been considered in the classical literature on differential operators and, more
recently, in a series of papers [3,5,10,12–14]. There is a filtrationD0

λ,µ ⊂ D1
λ,µ ⊂ D2

λ,µ ⊂
· · · ⊂ Dk

λ,µ ⊂ · · · , whereD0
λ,µ

∼= Fµ−λ is given by multiplication with(µ − λ)-densities.

The higher-order are defined by induction:A ∈ Dk
λ,µ if [ A, f ] ∈ Dk−1

λ,µ for everyf ∈
C∞(M).
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Let S := Pol(T ∗M) be the space of polynomials onT ∗M. This space is isomorphic
to the space of contravariant symmetric tensor fields onM. One defines a one parameter
family of Diff (M)-modules or Vect(M)-modules on the space of symbols

Sδ := S ⊗ Fδ.

This space is naturally considered (cf. [5,7]) as the space of symbols ofDλ,µ for µ−λ = δ.
Again, there is a filtrationS0

δ ⊂ S1
δ ⊂ · · · ⊂ Sk

δ ⊂ · · · , whereSk
δ denotes the space

of symbols of degree less or equal tok. In contrast to the filtration onDλ,µ, the previous
filtration on the space of symbols actually leads to a Diff(M)-invariant graduation:

Sδ = ∞⊕
k=0

Sk,δ.

HereSk,δ denotes the space of homogenous polynomials (isomorphic toSk
δ /Sk−1

δ ). Let us
recall that one result of [12] is that ifk ≥ 3 and dimM ≥ 2, the modulesDk

λ,µ andDk
λ′,µ′

are isomorphic provided that(λ′, µ′) = (1− µ, 1− λ). Moreover,Dk
λ,µ is not isomorphic

to the corresponding symbols spaceSk
δ = ⊕l≤kSl,δ (cf. [13]).

1.2. Main problem

Sδ andDλ,µ are neither isomorphicas Diff(M)-modules nor as Vect(M)-modules. It is
natural to consider a subgroupG ⊂ Diff (M) (of finite dimension) and restrict the action
of Diff (M) to G. This idea has been used in [17] (for SL(2, R) ⊂ Diff (S1)) and [3,4,9]
for the one dimensional case. In higher dimensions, the spaceDk

λ,µ has been studied in
[6,7] on a conformally flat manifold. In this case the symmetry group isG = SO(p +
1, q + 1), p + q = dim(M). The main result of [7] is thatDk

λ,µ andSk
δ are isomorphic as

SO(p + 1, q + 1)-modules for almost all values ofδ = µ − λ, except for resonant values.

The detailed study ofD2
λ,µ

∼=→S2
δ was performed in [6]. Here we propose the study of the

isomorphism

D3
λ,µ

∼=→S3
δ . (1.1)

The conformally equivariant quantization was developed in [6] and the existence and unique-
ness was proven in [7] for generic values ofµ − λ. Detailed studies of the modules of
third-order linear differential operators are of particular interest; they yield interesting ex-
amples for quantization. In other word, the resonant modules whose existence was proven in
[6,7] have not yet been studied in the case of third-order. However, these particular modules
provide remarkable examples of differential operators.

1.3. Application to the quantization of the geodesic flow

As an example, the quantization of the geodesic flow yields a novel conformally equi-
variant Laplace operator on half-densities, as well as the well-known Yamabe Laplacian.
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2. Main results

Let M be a manifold endowed with a flat conformal structure: there exists a local action
of the group O(p+1, q+1) onM, which enables us to restrict the Diff(M)-moduleDλ,µ to
the conformal group. In the following, we recall the corresponding action of the Lie algebra
o(p + 1, q + 1).

2.1. The conformal Lie algebrao(p + 1, q + 1) ⊂ Vect(Rn)

It is well-known that a conformally flat manifold admits an atlas in which o(p+1, q +1)

is generated by

Xi = ∂i (translations), Xij = xi∂j − xj ∂i (rotations),

Xi = xjx
j ∂i − 2xix

j ∂j (inversions), X0 = xi∂i (homothety), (2.1)

where∂i = ∂/∂xi with i, j = 1, . . . , n; xi = gijx
j ; and the flat metricg = diag(1, . . . , 1,

−1, . . . , −1) has a tracep − q (p + q = n, sum over repeated indices is understood).

2.2. Theorem of isomorphism in the generic case

We can now state the main result of this work whose proof will be given in Section 5.

Theorem 2.1. If n = p + q ≥ 2,
1. there exists an isomorphism ofo(p + 1, q + 1)-modules:

σλ,µ : D3
λ,µ

∼=→S3
δ (2.2)

provided

δ = µ − λ /∈
{

n + 2

2n
,
n + 4

2n
,

2

n
, 1,

n + 1

n
,
n + 2

n
,
n + 3

n
,
n + 4

n

}
, (2.3)

2. for everyλ andµ as in (2.3), this isomorphism is unique under the condition that the
principal symbol be preserved at each order.

Therefore, in the general situation, the unique invariant of the o(p + 1, q + 1)-module
D3

λ,µ is the difference:δ = µ − λ.
We will call the particular values ofδ given by the formula (2.3) resonances.

Remark 2.2. Theorem 2.1 is compatible with the result of [7], but the demonstration will
be different.

Proposition 2.3. If n = 1, then Theorem2.1holds with the resonances:1, 3
2, 2, 5

2, 3. (see
[9,11]).
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Definition 2.4. The isomorphismσλ,µ given by (2.2) is called the conformally equivariant
symbol map while its inverse

Qλ,µ : S3
δ → D3

λ,µ, (2.4)

will be called the conformally equivariant quantization map.

2.3. The modulesD3
λ,µ in the resonant case

We study in this section the singular modules corresponding to the resonances in the case
n ≥ 2 (for then = 1 case, see [9]).

Theorem 2.5. For each resonant value ofδ, there exists a unique pair(λ, µ) of weights
such that theo(p + 1, q + 1)-modulesD3

λ,µ andS3
δ are isomorphic, as given below:

δ λ µ

1 0 1
2/n (n − 2)/2n (n + 2)/2n

(n + 1)/n 0 (n + 1)/n

−(1/n) 1
(n + 2)/n −(1/n) (n + 1)/n

(n + 3)/n −(2/n) (n + 1)/n

−(1/n) (n + 2)/n

(n + 4)/n −(2/n) (n + 2)/n

(n + 2)/2n 0 (n + 2)/2n

(n − 2)/2n 1
(n + 4)/2n −(1/n) (n + 2)/2n

(n − 2)/2n (n + 1)/n

We will show that the isomorphism is not unique; there exists, actually, a one-, two-, or
three-parameter family of such isomorphisms in each resonant case.

3. Differential operators and symbols

Consider the determinant bundleΛnT ∗M → M. Let us recall that a tensor density of
degreeλ on M is a smooth section,φ, of the line bundle|ΛnT ∗M|⊗λ. The spaceFλ(M)

of tensor densities of degreeλ has a natural structure of a Vect(M)-module, defined by the
Lie derivative.

In coordinates:

φ = φ(x1, . . . , xn)|dx1 ∧ · · · ∧ dxn|λ.
The action ofX ∈ VectRn onφ ∈ C∞(Rn) is given by

Lλ
Xφ = Xi∂iφ + λ∂iX

iφ. (3.1)

Note, that this formula does not depend on the choice of local coordinates.
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Remark 3.1. The simplest examples of modules of tensor densities areF0 = C∞(Rn) and
F1 = Ωn(Rn), the moduleF1/2 is particularly important for geometric quantization (see
[2]).

Consider the spaceDλ,µ(Rn)(orDλ,µ for short) of differential operators on tensor den-
sities,A : Fλ → Fµ. The natural Vect(Rn)-action onDλ,µ is given by

L
λ,µ
X (A) = L

µ
X ◦ A − A ◦ Lλ

X. (3.2)

DenoteDk
λ,µ ⊂ Dλ,µ the Vect(Rn) — module ofkth-order differential operators. In local

coordinates any linear differential operator of orderk is of the form:

A = a
i1...ik
k ∂i1∂i2 . . . ∂ik + · · · + ai

1∂i + a0,

with coefficientsai1...ik
k ∈ C∞(Rn).

An operatorA : Fλ → Fµ is called a local operator onM if for all φ ∈ Fλ one has
Supp(A(φ)) ⊂ Supp(φ). It is a classical result (see [15,16]) that such operators are in fact
locally given by differential operators.

Consider the space Pol(T ∗
R

n) of functions onT ∗
R

n ∼= R2n, polynomial on the fibers:
P(ξ) = ∑k

l=0ā
i1...il
l ξi1 . . . ξil . One defines a one parameter family of Vect(Rn)-modules on

the space of symbols bySδ := Pol(T ∗M) ⊗ Fδ.
The action of Vect(Rn) onSδ reads:

Lδ
X(P ) =

(
Xi∂i − ξj ∂i(X

j )
∂

∂ξi

)
(P ) + δ(∂iX

i)P . (3.3)

Throughout this paper, we will identify the space of symbols with the space of symmetric
contravariant tensor fields onRn.

3.1. Identification of the vector spacesD(Rn) andPol(T ∗
R

n)

Let us consider the following map:

σ : D(Rn) → Pol(T ∗(Rn)), a
i1,... ,ik
k ∂i1∂i2 . . . ∂ik + · · · + ai

1∂i + a0

7→ a
i1,... ,ik
k ξi1 . . . ξik + · · · + a0. (3.3)′

We obtain in this way an isomorphism of vector spacesD(Rn) ∼= Pol(T ∗
R

n).
The Vect(Rn)-actions are, of course, different. We will, therefore, distinguish two Vect

(Rn)-modules

Dλ,µ ≡ (Pol(T ∗(Rn)), L
λ,µ
X ), (3.4)

Sδ ≡ (Pol(T ∗(Rn)), Lδ
X), δ = µ − λ. (3.5)

Remark 3.2. In mathematical physics this identification is often called normal ordering.
Another frequently used way to identify the space of differential operators onR

n with the
space Pol(T ∗

R
n) is provided by the Weyl symbol calculus.
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3.2. Comparison of theVect(Rn)-action onDλ,µ andSδ

Let us compare the Vect(Rn)-action onDλ,µ with the standard Vect(Rn)-action on
Pol(T ∗

R
n). We will use the preceding identification and write the Vect(Rn)-action (3.2)

in term of polynomials.

Lemma 3.3. TheVect(Rn)-action onDλ,µ has the following form:

L
λ,µ
X = Lδ

X − 1
2∂ijX∂ξi

∂ξj
− λ(∂i ◦ D)X∂ξi

, (3.6)

where DX= ∂iX
i .

Proof. Straightforward computation. �

Proposition 3.4. The action ofo(p + 1, q + 1) onDλ,µ reads:

1. L
λ,µ
X = Lδ

X for all X ∈ ce(p, q) = 〈X0, Xij , Xi〉, (3.7)

2. L
λ,µ

Xi
= Lδ

Xi
− ξiT + 2(E + nλ)∂ξi

, (3.8)

whereT = ∂ξj ∂ξj
is the traceE = ξj ∂ξj

, the Euler operator.

Proof. This is a direct consequence of the preceding lemma. �

4. Explicit formulae for the isomorphism

Let us give the explicit formula for the isomorphism (2.2). The isomorphism (2.2) is
uniquely determined by two properties:
1. σλ,µ intertwines the o(p + 1, q + 1)-action (3.3) and (3.4):

σλ,µ ◦ L
λ,µ
X = Lδ

X ◦ σλ,µ for all X ∈ o(p + 1, q + 1). (4.1)

2. σλ,µ preserve the principal symbol ofA.

4.1. The image of an operator and the image of a symbol

If A = a
ijk
3 ∂i∂j ∂k + a

ij
2∂i∂j + ai

1∂i + a0 ∈ D3
λ,µ, thenσλ,µ(A) = ā

ijk
3 ξiξj ξk + ā

ij
2ξiξj +

āi
1ξi + ā0 is given by the following proposition.

Proposition 4.1. The isomorphismσλ,µ is given by

ā
ijk
3 = a

ijk
3 , ā

ij
2 = a

ij
2 + α1glm(gjk∂ka

ilm
3 + gik∂ka

jlm
3 ) + α2∂ka

ijk
3 + α3g

ijglm∂ka
klm
3 ,

āi
1 = ai

1 + α4g
ijgkl∂ja

kl
2 + α5∂ja

ij
2 + α6g

jkglm∂j ∂ka
ilm
3 + α7∂j ∂ka

ijk
3

+α8g
ijglm∂j ∂ka

klm
3 ,

ā0 = a0 + α9∂ia
i
1 + α10g

ijgkl∂i∂j a
kl
2 α11∂i∂j a

ij
2 + α12g

ijglm∂i∂j ∂ka
klm
3

+α13∂i∂j ∂ka
ijk
3 , (4.2)
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where

α1 = −3n(−1 + δ + 2λ)

2(nδ − 2)(nδ − 4 − n)
, α2 = 3(nλ + 2)

nδ − n − 4
,

α3 = −3n(2λ + δ − 1)

(nδ − 2)(nδ − n − 2)(nδ − n − 4)
, α4 = −n(2λ + δ − 1)

(nδ − 2)(nδ − n − 2)
,

α5 = 2(nλ + 1)

nδ − n − 2
, α6 = −3(nλ + 1)(nλ − n + nδ − 1)

(2nδ − n − 4)(nδ − n − 3)(nδ − n − 2)
,

α7 = 3(nλ + 2)(nλ + 1)

(nδ − n − 2)(nδ − n − 3)
,

α8 = −3(nλ + 1)(4n2λδ − 2n2λ − 3n2δ + n2 + 2n2δ2 − 10nλ + 5n − 4nδ − 2)

(nδ − 2)(nδ − n − 2)(nδ − n − 3)(2nδ − n − 4)
,

α9 = λ

δ − 1
, α10 = −nλ(δ + λ − 1)

(δ − 1)(nδ − n − 1)(2nδ − n − 2)
,

α11 = λ(nλ + 1)

(δ − 1)(nδ − 1 − n)
, α12 = −3nλ(nλ+1)(δ+λ−1)

(δ−1)(nδ−1−n)(nδ−n−2)(2nδ − 2 − n)
,

α13 = λ(nλ + 1)(nλ + 2)

(δ − 1)(nδ − n − 1)(nδ − 2 − n)
. (4.3)

Proposition 4.2. The inverseo(p+1, q+1)-equivariant quantization mapQλ,µ is given by

a
ijk
3 = ā

ijk
3 , a

ij
2 = ā

ij
2 − α1glm(gjk∂kā

ilm
3 + gik∂kā

jlm
3 ) − α2∂kā

ijk
3 − α3g

ij∂kā
klm
3 glm,

ai
1 = āi

1 − α4g
ij∂j ā

kl
2 gkl − α5∂j ā

ij
2 + (α1α5 − α6)g

jk∂j ∂kā
ilm
3 glm

+(α2α5−α7)∂j ∂kā
ijk
3 +((2α1+α2+nα3)α4+(α1 + α3)α5 − α8)g

ij∂j ∂kā
klm
3 glm,

a0 = ā0 − α9∂i ā
i
1 + (α4α9 − α10)g

ij∂i∂j ā
kl
2 gkl + (α5α9 − α11)∂i∂j ā

ij
2

+((2α1 + α2 + nα3)(α10 − α4α9) + (2α1 + α3)(α11 − α5α9)

+(α6 + α8)α9 − α12)g
ij∂i∂j ∂kā

klm
3 glm

+((α7 − α2α5)α9 + α2α11 − α13)∂i∂j ∂kā
ijk
3 . (4.4)

4.2. Particular case corresponding toD2
λ,µ andS2

δ

If ā
ijk
3 = 0, then we obtain

ā
ij
2 = a

ij
2, āi

1 = ai
1 + α4g

ijgkl∂ja
kl
2 + α5∂ja

ij ,

ā0 = a0 + α9∂ia
i
1 + α10g

ijgkl∂i∂j a
kl
2 + α11∂i∂j a

ij
2

and

a
ij
2 = ā

ij
2, ai

1 = āi
1 − α4g

ij∂j ā
kl
2 gkl − α5∂j ā

ij
2,

a0 = ā0 − α9∂i ā
i
1 + (α4α9 − α10)g

ij∂i∂j ā
kl
2 gkl + (α5α9 − α11)∂i∂j ā

ij
2 .

We recognize the result of [6].
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4.3. Application

Let us illustrate our quantization procedure with a specific and important example, namely
the quantization of the geodesic flow on a conformally flat manifold(M, ḡ). Consider, on
T ∗M, the quadratic Hamiltonian

H = ḡij ξiξj ,

whose flow projects onto the geodesics of(M, ḡ).
In the casen ≥ 2, and forλ = µ = 1

2, the quantization mapQλ,µ yields the following
expression:

Q1/2,1/2(H) = 4 − n2

4(n − 1)(n + 2)
R,

where4 is the Laplace operator andR the scalar curvature of(M, ḡ). This operator is a
natural new candidate for the quantized Hamiltonian of the geodesic flow on a (pseudo-)
Riemannian manifold. None of the expressions obtained in the literature by different meth-
ods of quantization (see, e.g., [5] for the relevant references) correspond to this one; all
these expressions lack the conformal equivariance property (in the conformally flat case).

5. Conformally equivariant quantization map

It should be emphasized that the isomorphism (2.2) is necessarily given by a differential
map. This fact is already guaranteed by the equivariance with respect to the subalgebra
Rn R

n generated by homotheties and translations, i.e. by the following proposition.

Proposition 5.1 (Lecomte and Ovsienko [13]).If k ≥ l, anyR n Rn-equivariant map
Sk

δ → Sl
δ is local.

By Peetre’s theorem [15,16] such maps are locally given by differential operators. We will
solve the equivariance equation and show that the quantization map is given by a globally
defined differential operator.

Proposition 5.1 together with the generalized Weyl–Brauer theorem (cf. [6]), leads to
the general form for ae(p, q)-equivariant quantization mapQλ,µ : Sk

δ → Dk
λ,µ given by

differential operatorsQλ,µ = αr,e,g,d,l,tR
rEeGgDd 4l Trt , whereαr,e,g,d,l,t are smooth

function onM and

R = ξ iξi , E = E + n

2
= ξi

∂

∂ξi

+ n

2
, G = ξ i ∂

∂xi
,

D = ∂

∂ξi

∂

∂xi
, 4 = ∂

∂xi

∂

∂xi

, T = ∂

∂ξ i

∂

∂ξi

,

generate the commutant(e(p, q) = 〈Xij , Xi〉)! in End(C[ξ1, . . . , ξn, x
1, . . . , xn]). Since

[Qλ,µ, LXδ
i
] = (−∂i(αr,e,g,d,l))Qλ,µ and [Qλ,µ, LXδ

0
] = 2(r + g + l − t)Qλ,µ, then the
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equivariance with respect to translations and homotheties implies thatαr,e,g,d,l are constant
andt = r + g + l. Finally, we obtain the following proposition.

Proposition 5.2. Anyo(p + 1, q + 1)-equivariant quantization mapQλ,µ : Sk
δ → Dk

λ,µ

is of the form

Qλ,µ = αr,e,g,d,lR
r
0E

eG
g

0Dd4l
0, (5.1)

where we have put

R0 = R ◦ T , G0 = G ◦ T , 40 = 4 ◦ T .

We will also impose the natural normalization condition which demands that the principal
symbol be preserved:

αr,e,0,0,0 =
{

1 if (r, e) = (0, 0),

0 otherwise.
(5.1)′

5.1. Solving the equivariance equation

In the case of third order differential operators, which is the one this article is devoted to,
the corresponding form is given by the following proposition:

Proposition 5.3. There exists a unique quantization map of the form:

Qλ,µ = Id + γ1G0 + γ2D + γ3ED + γ4 40 +γ5D
2 + γ6ED

2 + γ7G0
2 + γ8E 40

+γ9D 40 +γ10D
3 + γ11EG0 + γ12E

2D + γ13R0D, (5.2)

satisfying the equivariance equation
Qλ,µLδ

X = L
λ,µ
X Qλ,µ for all X ∈ o(p + 1, q + 1). (5.3)

The equivariance condition for the quantization map leads to the following system:

(2 − nδ)(γ1 + γ11) − (γ2 + γ3 + γ12) = −1
2,

(2 + n(1 − 2δ))γ4 − γ5 = nλ(γ1 + γ11),

2(1 + n(1 − δ))γ5 = nλ(γ2 + γ3 + γ12), (1 − δ)γ2 = λ,

2γ3 + (6 + n(1 − δ))γ12 = 0, 2γ2 + n(1 − δ)γ3 − 4γ12 = 1,

−γ3 + (2 − nδ)γ11 − 3γ12 = 0, γ1 + 2γ11 + (2 + n(1 − δ))γ13 = 0,

2(2γ5 + (3 + n(1 − δ))γ6) = γ2 + (nλ + 2)γ3 + (3nλ + 4)γ12,

2γ4 − γ6 + (4 + n(1 − 2δ))γ8 = γ1 + (nλ + 2)γ11,

2γ4 + 2(2 + n(1 − δ))γ7 + 2γ8 = (nλ + 1)(γ1 + 2γ11),

(2 + n(1 − δ))γ9 = nλ(γ4 + γ8), 3(2 + n(1 − δ))γ10 = nλ(γ5 + γ6).

The solution of this system1 is unique for everyδ as in (2.3).

1 The system has been interpreted with Maple logiciel.
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5.2. Example:λ = µ = 1
2

In this special case (considered in the framework of geometric quantization) one obtains:

Q1/2,1/2 = Id + 1

2
D + n

8(n + 1)(n + 2)
40 + n

8(n + 1)
D2 + 1

4(n + 1)(n + 3)
ED2

− n2 + 2n − 2

4(n + 1)(n + 2)(n + 3)(n + 4)
E 40 + n

16(n + 3)(n + 4)
D 40

− 1

8(n + 3)(n + 4)
G0

2 + n

48(n + 3)
D3.

Remark 5.4. If n → ∞, the preceding formula becomes:

Q1/2,1/2 = Id + 1
2D + 1

8D2 + 1
48D

3.

We recognize the Weyl quantization (cf. [8], p. 87; [1]):

QWeyl = exp
(
i(1

2~)D
)

= Id + i 1
2~D − (1

8~
2)D2 − i( 1

48~
3)D3 + O(~4).

5.3. Proof of Theorem 2.1

The o(p+1, q+1)-equivariant quantization map (5.2) coincides with the expression (4.4)
according to the identification given byσ (see (3.3)′). We have thus proven the existence
of an isomorphism (2.2) provided the coefficientsα are well defined, i.e. condition (2.3)
holds. This proves part (1) of Theorem 2.1.

Then, the formula (5.1) and the normalization condition insure that, up to a multiplicative
constant, every o(p + 1, q + 1)-equivariant quantization map is, indeed, of the form (5.2).
The uniqueness of the quantization map (part (2) of Theorem 2.1) follow immediately from
(5.2).

5.4. Proof of Theorem 2.5

The previous system determines all o(p + 1, q + 1)-equivariant linear maps formS3
δ to

D3
λ,µ. In the resonant case, of course, this system has, in general, no solution. However,

solving it for γ andλ as an extra indeterminate, one immediately obtains the values ofλ

andµ as shown in the table.
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