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Abstract

Let M be a smooth manifold endowed with a flat conformal structure Bna@) the space
of densities of degreg on M. We study the spac@ uM) of third-order differential operators
from F, (M) to F,,(M) as a module over the conformal Lie algebi@e+ 1, ¢ + 1). We prove
thath (M) is |som0rph|c to the corresponding module of third-order polynomialB*aqi/) for
almost aII values 08 = u — A, except for eight resonant values. The isomorphism is unique and
will be given explicitly, yielding a conformally equivariant quantization. We also study the modules
in the case of resonance. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction
1.1. Modules of differential operators

The study of the spad®;, ,, of linear differential operators on a smooth manifold viewed
as a module over the group Diff7) of diffeomorphisms of/, and the Lie algebra Veg)
of vectors fields o/ is a classical problem of differential geometry [17]. The mod@gs,
have already been considered in the classical literature on differential operators and, more
recently, in a series of papers [3,5,10,12—-14]. There is a filtrélag)g C Dl C D2

.C D}, C---, whereD) = F,; is given by multiplication Wlt}"(,u A) denS|t|es
The higher-order are defined by inductiof: e D |f [A, f] € D for every f €
C>®(M).
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Let § := Pol(T*M) be the space of polynomials df M. This space is isomorphic
to the space of contravariant symmetric tensor field3orOne defines a one parameter
family of Diff (M)-modules or VeqiM)-modules on the space of symbols

Ss =S ® Fs.

This space is naturally considered (cf. [5,7]) as the space of symbbis pfor u — 1 = 6.
Again, there is a filtratiorsY C S} c ---  S¥  ---, whereS¥ denotes the space

of symbols of degree less or equalktoln contrast to the filtration o, ,, the previous

filtration on the space of symbols actually leads to a Qiff-invariant graduation:

o0
Ss = @ Sk.s-
k=0

Here Sk s denotes the space of homogenous polynomials (isomorpfﬂ@/ﬁg*). Letus
recall that one result of [12] is that#f > 3 and dimM > 2, the moduleﬂ)’;’ﬂ andD’;/’M,
are isomorphic provided that/, 1) = (1 — u, 1 — ). Moreover,Df’M is not isomorphic

to the corresponding symbols spm§e= Br<kS1.s (cf. [13]).
1.2. Main problem

Ss andD, _,, are neither isomorphies Diff(M)-modules nor as Vet )-modules. Itis
natural to consider a subgroup C Diff (M) (of finite dimension) and restrict the action
of Diff (M) to G. This idea has been used in [17] (for @.R) c Diff (s1)) and [3,4,9]
for the one dimensional case. In higher dimensions, the s@égghas been studied in
[6,7] on a conformally flat manifold. In this case the symmetry grougis= SO(p +
1,q+1), p+gq = dim(M). The main result of [7] is thaP}  and S} are isomorphic as
SQ(p + 1, g + 1)-modules for almost all values 6f= 1 — A, except for resonant values.
The detailed study de’Mi S52 was performed in [6]. Here we propose the study of the
isomorphism

D} S5, (1.1)

The conformally equivariant quantization was developed in [6] and the existence and unique-
ness was proven in [7] for generic valuesof- A. Detailed studies of the modules of
third-order linear differential operators are of particular interest; they yield interesting ex-
amples for quantization. In other word, the resonant modules whose existence was proven in
[6,7] have not yet been studied in the case of third-order. However, these particular modules
provide remarkable examples of differential operators.

1.3. Application to the quantization of the geodesic flow

As an example, the quantization of the geodesic flow yields a novel conformally equi-
variant Laplace operator on half-densities, as well as the well-known Yamabe Laplacian.



S.E. Loubon Djounga/ Journal of Geometry and Physics 37 (2001) 251-261 253

2. Main results

Let M be a manifold endowed with a flat conformal structure: there exists a local action
of the group @p+1, g +1) on M, which enables us to restrict the Oi# )-moduleD;, _, to
the conformal group. In the following, we recall the corresponding action of the Lie algebra
olp+1,qg+1).

2.1. The conformal Lie algebm(p + 1, ¢ + 1) C Vect(R")

Itis well-known that a conformally flat manifold admits an atlas in which e 1, ¢ + 1)
is generated by

X, =0; (translationy, Xjj = x;0; — x;0; (rotationg,
X; =x;x/8; — 2x;x79; (inversions, Xo=x'9; (homothety, (2.1)

whered; = 3/dx' withi, j = 1, ..., n; x; = gjx/; and the flat metrig = diag(1, ... , 1,
—1,...,—-1)has atracep — g (p + g = n, sum over repeated indices is understood).

2.2. Theorem of isomorphism in the generic case
We can now state the main result of this work whose proof will be given in Section 5.

Theorem2.1.1fn =p+q > 2,
1. there exists an isomorphismafp + 1, ¢ + 1)-modules:

Ohp i DY =Sy (2.2)
provided
2 4 2 1 2 3 4
(S:M_)\'¢ n+ an+ s T 7n+ 7n+ 7n+ ’n+ ) (23)
2n 2n n n n n n

2. for everya and u as in(2.3), this isomorphism is unique under the condition that the
principal symbol be preserved at each order

Therefore, in the general situation, the unique invariant of the 1, ¢ + 1)-module
D}, is the differences = 1 — 1.
We will call the particular values af given by the formula (2.3) resonances.

Remark 2.2. Theorem 2.1 is compatible with the result of [7], but the demonstration will
be different.

Proposition 2.3. If n = 1, then Theoren2.1 holds with the resonances; 2, 2, 3

15,2, 3,3. (see
[9,11)).
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Definition 2.4. The isomorphisna, . given by (2.2) is called the conformally equivariant
symbol map while its inverse

QiS5 — D3, (2.4)

will be called the conformally equivariant quantization map.
2.3. The module®} , in the resonant case

We study in this section the singular modules corresponding to the resonances in the case
n > 2 (for then = 1 case, see [9]).

Theorem 2.5. For each resonant value @f there exists a unique pait., u) of weights
such that the(p + 1, ¢ + 1)-modulesD}  and S3 are isomorphic, as given below:

1) A 1%

1 0 1

2/n (n—2)/2n n+2)/2n

(n+21)/n 0 n+1/n
—(1/n) 1

(n+2)/n —(1/n) (n+1)/n

(n+3)/n —(2/n) (n+1)/n
—(/n) (n+2)/n

(n+4)/n —(2/n) (n+2)/n

(n+2)/2n 0 (n+2)/2n
(n —2)/2n 1

n+4)/2n —(1/n) n+2)/2n
(n—2)/2n n+1)/n

We will show that the isomorphism is not unique; there exists, actually, a one-, two-, or
three-parameter family of such isomorphisms in each resonant case.

3. Differential operators and symbols

Consider the determinant bundle'T*M — M. Let us recall that a tensor density of
degreex on M is a smooth section, of the line bundlg A T*M|®*. The spaceF; (M)
of tensor densities of degreehas a natural structure of a Vé#t)-module, defined by the
Lie derivative.

In coordinates:

=Gl ..., xMdxt A Adx")
The action ofX € VectR” on¢ € C*°(R") is given by
Lo = X'9;¢ + 28 X'¢. (3.1)

Note, that this formula does not depend on the choice of local coordinates.
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Remark 3.1. The simplest examples of modules of tensor densitie$gare C*°(R") and
F1 = 2"(R"), the moduleFy,, is particularly important for geometric quantization (see

[2]).

Consider the spac®,_, (R")(or D, , for short) of differential operators on tensor den-
sities,A : F, — F,. The natural VedR")-action onD,, , is given by

L Ay =LE o A— Ao L. (3.2)

DenoteD" C D, , the Vec(R") — module ofkth-order differential operators. In local
coordmates any linear differential operator of oréés of the form:

A=ar 8,0, ... 0 + - +aid; + ao,

with coefficientSa,’;l“""‘ € C®(RM).

An operatorA : F, — F, is called a local operator oM if for all ¢ € F, one has
SuppA(¢)) C Supp¢). Itis a classical result (see [15,16]) that such operators are in fact
locally given by differential operators.

Consider the space R@I*R") of functions onT*R" = R?*, polynomial on the fibers:
PE) = Z, 0"1 ”5,1 ... &;,. One defines a one parameter family of \(@t)-modules on
the space of symbols b§g := Pol(T*M) ® F;.

The action of VedafR") on Ss reads:

LY (P) = (X"a,- - s,-axX-")ai) (P)+8@;X")P. (3.3)

Throughout this paper, we will identify the space of symbols with the space of symmetric
contravariant tensor fields @&’

3.1. Identification of the vector spacBsR”) and Pol(T*R")

Let us consider the following map:
o : DR") — Pol(T*(R™), a8y, 3, . .. 83, + - -+ ald; + ao
— a]il""'ik.’;:il - fik + -4 aop. (33)(

We obtain in this way an isomorphism of vector spabgR”) = Pol(T*R").
The VectR")-actions are, of course, different. We will, therefore, distinguish two Vect
(R")-modules

Dy = (POlT*RM), Ly"), (3.4)
= (Pol(T*(R™)), L), 8 = — A. (3.5)
Remark 3.2. In mathematical physics this identification is often called normal ordering.

Another frequently used way to identify the space of differential operatoi®’anith the
space PdIr*R") is provided by the Weyl symbol calculus.
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3.2. Comparison of theect(R")-action onD;, ,, and S;

Let us compare the Ve@")-action onD, , with the standard Ve¢R")-action on
Pol(T*R"). We will use the preceding identification and write the \@?#)-action (3.2)
in term of polynomials.

Lemma 3.3. TheVect(R")-action onD,_,, has the following form:

LM = L — 30§ X0, 9, — 1(3; 0 D)X, (3.6)
where DX= §; X".

Proof. Straightforward computation. O

Proposition 3.4. The action ob(p + 1, ¢ + 1) onD;_ ,, reads:

1. Ly" =LY% for all X ece(p,q) = (Xo, Xij, Xi), (3.7)

2. LM = L5 —&T + 2(€ + ni)oe,, (3.8)
WhereT = J;j 0¢, is the tracef = &;0¢,, the Euler operator

Proof. This is a direct consequence of the preceding lemma. O

4. Explicit formulae for the isomorphism

Let us give the explicit formula for the isomorphism (2.2). The isomorphism (2.2) is
uniquely determined by two properties:
1. oy, intertwines the gp + 1, ¢ + 1)-action (3.3) and (3.4):
ool =1% 00, foral X eo(p+1,q+1). (4.1)

2. o3, preserve the principal symbol df.

4.1. The image of an operator and the image of a symbol

If A= a3 90,0 +ay0;0; +ald; +ao € D3, thenoy . (A) = @y && ;6 + ag&is; +

Eli& + ag is given by the following proposition.

Proposition 4.1. The isomorphisra;, ,, is given by

—ijk jk
al = o, ag = a) + a1gm(g oal™ + ¢*opal™) + ardkal + azg gmdrak™,

Ezi = al + a4g gk|8ja2 + a58ja2 + asg g|m8j8ka3 + a78j8ka3
+agg! gimd; 3kalgflm,
ao = ap + agd;al + a10g" gudi 3jai2d0!113i Bjag + a128" gimd; a; aka!g(,lm
+ar130;0; 0al’, 4.2)
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where
_ =3(=1+5+21) _ 3(nr+2)
A= —2mo—d—n) PTms—n—a
—3n@2r+8—1) a8 —1)
a3 = ’ a4 = ’
né—2)(né —n—2)(néd —n —4) né —2)(né —n—2)
2(na +1) —3mA+1)(mr—n—+né —1)
g = —— oG

T —n—2 T2 —n—-8ns—n—-3)nb—n—-2)
3(nh + 2)(nh + 1)

T —n—2)(nd—n—3)

—3(nA + 1)(4n2r8 — 2n2n — 3125 + n? + 2n28%2 — 10nA + 5n — 4ns — 2)
w8 = (18— 2)(nd —n — 2)(nd —n — 3)(2n6 —n — 4) ’

Y A+ A — 1)
BT T DM —n—Dh@b—n—2)
A+ 1) 3 (A1) (54—

M= D —1—n) 2T D mo—1—m)(db—n—2)2n8 —2—n)’
wia— r(nh 4+ D(nA + 2) 4.3)

G—-—1Dné—n—-—1mé—2—n)

Proposition4.2. The invers®(p+1, ¢ +1)-equivariant quantization mag@, ,, is given by

agk = égkf ag = C_lg — a1gim(g*dal™ + gikBkﬁgm) - otzak&gk — azg opalMgim,
a} = &) — aag" ;a8 gn — as0;@) + (105 — a6)g0; i gim

+(ctprs—r7)d; k@3 +((2e1-+optnag s+ (@ + az)rs — ag)g ;045 g,
ao = do — a9d; @} + (cractg — a10)g" d; ajélzdgkl + (o509 — 111)9; 8j&g

+((201 + a2 + nag)(a10 — asag) + (201 + az) (11 — asg)

+(ate + ag)org — r12)8" 9; 9 ka5 " gim

i
+((a7 — ap05) 0t + 211 — @13)3;0; Hdiy. - (4.4)

4.2. Particular case corresponding @2 , and S?

If Ezgk = 0, then we obtain

azJ :azj, ay = a’l+a4g”gk|8ja2 +0558ja”,
— i ij ki j
apg=ao + agaia’l + 108" gkid; djay + a110; Bjazl
and
i _ii . e .. _Kl _ii
aZJ = azj, a; = ay —aag"d;ay g — a58ja21,
B . ) M i
ag = do — ed;dl + (aacg — 010)8"8;9;a5 gui + (asre — @11)9;9;ds.

We recognize the result of [6].



258 S.E. Loubon Djounga/ Journal of Geometry and Physics 37 (2001) 251-261

4.3. Application

Letusillustrate our quantization procedure with a specific and important example, namely
the quantization of the geodesic flow on a conformally flat manifafd g). Consider, on
T*M, the quadratic Hamiltonian

H = g"&z¢;,

whose flow projects onto the geodesics #f, g).
In the caser > 2, and forh = u = % the quantization mag, ,, yields the following
expression:

n2

Y

whereA is the Laplace operator ami the scalar curvature ai, g). This operator is a

natural new candidate for the quantized Hamiltonian of the geodesic flow on a (pseudo-)
Riemannian manifold. None of the expressions obtained in the literature by different meth-
ods of quantization (see, e.g., [5] for the relevant references) correspond to this one; all
these expressions lack the conformal equivariance property (in the conformally flat case).

Q1/2,172(H) = A

5. Conformally equivariant quantization map

It should be emphasized that the isomorphism (2.2) is necessarily given by a differential
map. This fact is already guaranteed by the equivariance with respect to the subalgebra
R x R" generated by homotheties and translations, i.e. by the following proposition.

Proposition 5.1 (Lecomte and Ovsienko [13])f £ > [, any R x R"-equivariant map
Sk — Skislocal.

By Peetre’s theorem [15,16] such maps are locally given by differential operators. We will
solve the equivariance equation and show that the quantization map is given by a globally
defined differential operator.

Proposition 5.1 together with the generalized Weyl-Brauer theorem (cf. [6]), leads to
the general form for a(p, ¢)-equivariant quantization mag, ,, : S§ — D’){,M given by
differential operator; ,, = e .40, R"ECGEDY Al Tr', wherea, ¢ 4 4.1, are smooth
function onM and

. n B n .0
R=¢&'¢, E=E+—-=§&— + —, G=¢—,
£'g; +3 5’as,+2 éax,
K R K
o0& oxt T oaxt ax;’ R

generate the commuta(p, ¢) = (Xjj, X;))' in End(C[&1, ... , &, x1, ..., x"]). Since
(O Lxg] = (=0 (re,g,a,1)) Qs ANA [Q;. 4, Lxg] =2(r+g+1—1)Q; ,, thenthe
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equivariance with respect to translations and homotheties implies,that; ; are constant
andr = r + g + [. Finally, we obtain the following proposition.

Proposition 5.2. Anyo(p + 1, ¢ + 1)-equivariant quantization map;, ,, : S§ — DIA{,,L
is of the form

Oipi = Ur e g.a 1 REECGEDI AL, (5.1)
where we have put
Ro=RoT, Go=GoT, Ao=AoT.

We will also impose the natural normalization condition which demands that the principal
symbol be preserved:

1 if (r,e) =(0,0),

0 othemwise (5.1

Or.e,0,0,0 = {

5.1. Solving the equivariance equation

In the case of third order differential operators, which is the one this article is devoted to,
the corresponding form is given by the following proposition:

Proposition 5.3. There exists a unique quantization map of the form:

Q5. =1d+ y1Go + y2D + y3ED + ya Ao +y5D? + y6ED? + y1Go® + 18E Ao
+yoD Ao +y10D° + y11€Go + y12E2D + y13RoD, (5.2)

satisfying the equivariance equation
Qi Ly =L%" 0, forall X eo(p+1,q+1). (5.3)

The equivariance condition for the quantization map leads to the following system:

2—nd(1+y11 — (2 +y3+y12) = —3,

(24+n1—28)ys— ys =ni(y1+ y11),

21 +n1—90))ys = ni(y2+ v3 + y12), Q=8&y2=4,

2y3+ (6+n(1—-98)y2=0, 2y2+n(l—-38)y3—4y2=1,

—y3+ (2—nd)y11—3r12=0, Y1+2y11+2+nl1-98)y13=0,

22ys+ B+ n(1—=68)ye) = v2+ (nA + 2)y3 + Bnr + 4y,

2ya—ve+ (4+n(l—20))ys = y1+ (nk + 2)y11,

2ya+22+n(1-8)yr+ 2y = (nr + (1 + 2y10),

(2+n(1—68))ys =ni(ya+ vs), 3(2+n(1—98))y10=nr(ys + ve).
The solution of this systefhis unique for every as in (2.3).

1 The system has been interpreted with Maple logiciel.
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5.2. Examplex = 1 = 3

In this special case (considered in the framework of geometric quantization) one obtains:

. o opry b epe
°T8mn+1) 4+ D(n +3)

1
—id+ =D A
Quarz=ld+ 5D+ g2

B n24+2n—2 £ Ao+ n D
i+ D +2n+3n+d 2160 1 3 + 4

Ao

n
- = G2+ —" D8
8n+3n+4"% T 18013

Remark 5.4. If n — oo, the preceding formula becomes:
01212 =1d+ 3D+ iD?*+ ED°.
We recognize the Weyl quantization (cf. [8], p. 87; [1]):

Oweyl = exp(i(%h)D) =1d+i1hD — (1WA D? — i(AH3)D? + O(H).

5.3. Proof of Theorem 2.1

The d p+1, g+1)-equivariant quantization map (5.2) coincides with the expression (4.4)
according to the identification given lay (see (3.3). We have thus proven the existence
of an isomorphism (2.2) provided the coefficientsre well defined, i.e. condition (2.3)
holds. This proves part (1) of Theorem 2.1.

Then, the formula (5.1) and the normalization condition insure that, up to a multiplicative
constant, every@ + 1, ¢ + 1)-equivariant quantization map is, indeed, of the form (5.2).
The uniqueness of the quantization map (part (2) of Theorem 2.1) follow immediately from
(5.2).

5.4. Proof of Theorem 2.5

The previous system determines alpot 1, ¢ + 1)-equivariant linear maps formg’ to
Df,u. In the resonant case, of course, this system has, in general, no solution. However,
solving it for y and) as an extra indeterminate, one immediately obtains the values of
andu as shown in the table.
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